
Win at Reversing
API Tracing and Sandboxing through

Inline Hooking

Nick Harbour

2

Agenda

Reverse Engineering Primer

Approaches to Dynamic Analysis

 Inline Hooks

Advantages Over Other Techniques

Usages

3

Reverse Engineering Primer

Reverse Engineering techniques can be
devided into two categories: Static and
Dynamic Analysis

Static Analysis

• Techniques which do not involve running the code

• Disassembly, file structure analysis, strings, etc.

Dynamic Analysis

• Techniques which involve running the code

• Behavioral analysis

4

Approaches to Dynamic Analysis

Network Monitoring

• Isolated Physical Networks

• Virtual Networks

Hardware Emulation

• Norman Sandbox et al.

Kernel-Level Monitoring (SSDT hooks)

• Sysinternals’ Process Monitor

Debuggers

5

Kernel-Level Monitoring

SSDT

User Mode Process
Kernel32.dll

Ntdll.dll

Calls CreateFile()

Kernel

ZwCreateFile()

System Call Performed

6

Kernel-Level Monitoring

SSDT

User Mode Process
Kernel32.dll

Ntdll.dll

Calls CreateFile()

Kernel

ZwCreateFile()

Procmon.sys

System Call Performed

7

Kernel-Level Monitoring

Advantages

• Captures every system call

• Can’t be avoided from userland

Disadvantages

• Only captures functions implemented as system
calls

• Not every important function call in the Win32 API
is implemented as a system call

• Tools don’t differentiate between process
housekeeping and calls from usercode

• Calls to internal DLL’s cannot be observed

8

Process Monitor

9

Process Monitoring via Debugging

Advantages

• Debugger can trap any function call, not just
system calls

• Trapped calls are more likely to be highly relevant
to the program’s operation

Disadvantages

• Have to act as a debugger

• Susceptible to countless anti-debugger techniques

10

Inline Hooks

Advantages

• Can trap any function call, not just system calls

• Trapped calls are more likely to be highly relevant
to the program’s operation

• Not operating as a debugger

• No device driver required

Disadvantages

• More of a pain in the #@! to implement

11

Monitoring with Inline Hooks

SSDT

User Mode Process
Kernel32.dll

Ntdll.dll

Calls CreateFile()

Kernel

ZwCreateFile()

System Call Performed

Hook

Handler

12

Implementing Inline Hooks

1. Find a function of interest

2. Disassemble the beginning of the
function

3. If possible, overwrite the beginning bytes
of the function with a jump or call
instruction

4. Implement a handler for the hooked
function

13

Why Disassemble?

 If you attempt to hook every function from
a DLL, for example, you might run into a
function such as the one below

 Inserting a 5 byte jump or call would write
beyond the end of the function. 

somefunction:

31 C0 xor eax, eax

C3 retn

14

A Successful Hook Install
original_function:

55 push ebp

89 E5 mov ebp, esp

81 EC 18 00 00 00 sub esp, 24

31 C9 xor ecx, ecx

…

hooked_function:

E9 E4 7C FF FF jmp <handler>

18 00 00 00 ;unused

31 C9 xor ecx, ecx

15

What to do with hooked functions.

Observe and Report

• Collect data about the current function call by
gathering data from stack and report to console

• Execute any instructions overwritten from the
hook

• Jump back to the next instruction in the hooked
function

 Intercept and Emulate

• Perform a specified action Instead of calling the
intended function

16

Roll-your-own Sandbox

Trap gethostbyname() to always return a
fixed IP address.

A pseudo-handle interface to allow fake
reads and writes to files and netwok
sockets.

• Trap connect() to connection to a pseudo-socket.

• CreateFile(), ReadFile(), WriteFile(),
MapViewOfFile()…

17

API Thief
 Launches target process in a suspended state

 Injects a DLL into the process.

 The Injected DLL hooks all Win32 API functions
before the target process is resumed

 API Call monitoring can be used simply with a
process monitor-style console

 Imbedded python can be used to write custom
handlers for specific hooked functions

 Obtain API Thief at www.mandiant.com

18

API Thief Demonstration

Basic Process Monitoring

Basic Interception (gethostbyname)

Pseudo-Handles demonstration

Automated Unpacking with API Thief

Questions?

nick.harbour@mandiant.com

nickharbour@gmail.com

