DIY Electric Car

Dave Brown

DC forums: RegEdit
Voltswagon@live.com
Background

- 8 years IT
- 3 years IT Security
- 12 years Electronics & more
- FIRST Robotics
- Solar Power Station
- Solar Water Heater
- Rain Barrels
- Bike Generator
- Murphy Bed
- Workbench
- Voltswagon
Road Map

• EV History
• EV Acronyms
• EV Pros & Cons
• EV Uses
• EV Parts & Layout
• Open Source EV Hardware & Software
• EV Conversion Tools
• EV Conversion Steps
Car Wars (1835 - 1920)

- EVs predate ICE autos by 50 years
- 1989 – EV is first to break 100 km/h (60 mph) barrier
- EVs outsold ICE autos 10 to 1
The ICE Strikes Back (1910 - 2012)

- Cheap oil
- Electricity still limited and expensive
- Growing rural population
- 1914 - Ford chooses gas-powered autos for motorized assembly line
- 1930 - Electric tram networks bought out and dismantled by GM and Big Oil
Return of the EV (1970 - 2012)

- 1970s – Air pollution concerns and OPEC embargo
- 1990 - 2003 – California Air Resources Board (CARB) mandates
- 2008 – Tesla
- 2010 – Nissan Leaf
- 2011 – iMiEV
EV Acronyms

- A – Amps
- AH – Amp Hours
- V – Volts
- w – Watts
- wH – Watt Hours
- wH/m – wH per mile
- MPGGe – Miles per Gallon equivalent
- BEV – Battery Electric Vehicle
- NEV – Neighborhood EV
- PHEV – Plug-in Hybrid EV
- E-REV – Extended Range EV
- R-EEV – Range Extended EV
EV Pros

• Less Complexity
• Less Maintenance
• Efficiency
• Longevity
• Sustainability
• Energy Independence
• National Security
• Environmental
EV Cons

• Batteries
 – Upfront costs
 – Lower energy density
 • Weight
 • Range

• Charging Stations
 – Availability
 – Charge time
Misconceptions

- The grid can’t take it
- Same pollution, moved to the plant
- More resources/pollution
- Lithium is scarce
- EVs are slow
EV Uses

- NEV
- Business
- Racing
- Commuting
NEV

- Golf Carts
- Security/Maintenance
- Grocery Getter
- Inexpensive
- Reduced regulations
Business

- High mileage yields quick ROI
- Predictable routes
- Low maintenance
Racing

• Peak torque from 0 RPM
• Wider power band requires less shifting
Commuting

- ~80% of US commutes are under 40 miles
- No energy wasted sitting in traffic
- Typical cost ≤ $0.02 / mile
- High efficiency (MPGe)
 - Energy: gasoline energy per gallon / Wh/m
 - 33.7 kWh / 280 Wh/m = 120 MPGe
 - Economic: gas price / electric rate / Wh/m
 - $3.33 gallon / $0.08/kWh / 280 Wh/m = 149 MPGe
Voltswagen

Vehicle: 1974 Volkswagen Beetle
Range: 16-26 Miles
Speed: 70 MPH
Cost: $6000
Time: 100 Hours
EV Parts List

Essentials
- Donor Vehicle
- Motor & Controller
- Shaft Coupler, Adapter Plate
- Batteries & Charger
- 12V Charger/DC-DC converter
- Battery/Motor cables & connectors
- Contactor(s), Fuse(s)
- Voltmeter, Ammeter, Shunt
- Throttle

Conditionals
- Battery Management/Monitoring System (BMS)
- Brake/Suspension Upgrades
- SOC Gauge/monitor
- Precharge circuits

Recommended
- Circuit Breaker/Emergency disconnect
- Temperature sensor(s)
- Tachometer
- Inertia switch
- 12V AUX Battery
- Motor/controller cooling
- Battery Box(es) / Insulation
- AH Counter

Optionals
- AC
- Clutch
- Heater
- Low Rolling Resistance Tires
- Power Steering
- Solar Panel(s)
6. Refer to vehicle’s shop manual for connections to Key switch, Check Engine Light, etc.
5. Heavy gauge wire (indicated as) should be 2/0 AWG.
4. Medium gauge wire (indicated as) should be 10 AWG minimum with 8 AWG preferred.
3. Light gauge wire (indicated as) should be 16 AWG.
2. Refer to documentation for installation and use details about each component (e.g., Paktrak).
Conversion Kits
Motor, Adapter Plate, Shaft Coupler

- 6.7" D&D ES-31B
- 72-144 V Series Wound DC
- Rated 12 HP, peak ~60 HP
Common Motor Options

- Warp
- Kostov
- Forklift
AC vs DC

- Easier Regen
- Runs cooler
- Even less maintenance

- Cheaper
- Greater selection
- Simpler
Motor Controller

- Curtis 1221C
- 120 V DC (nominal) 400 Amps Peak
- Aluminum finned heat sink
Motor Controller options

- Soliton
- Zilla
- Curtis
- Open ReVolt
Charger
Battery Pack

- 10 x 29DC Marine Deep Cycle Batteries
- 120 V
- 15 kWh
- 600 lbs
Battery Pack Calculations

• Range * wH/mile / 50% DOD / 60% Peukert
• 15 * 300 / .3 = 15 kWh
• Max range is 80% DOD

• Lithium
 – No Peukert
 – 70% DOD nominal
 – 80% DOD for max
Battery Options

Lead Acid
- Golf cart
- 6 V, 8 V
- 500-700 cycles

LiFePO4
- Prismatic
 - CALB, Sinopoly, Winston
- Cylindrical
 - Headway
- Pouch
 - A123
- 3.2 V
- 2000-5000 cycles
Lead vs Lithium (LiFePo4)

- Lower upfront cost
- Less sensitive
- No balancing necessary
- Easier to determine State of Charge (SOC)

- Light-weight
- Long cycle life
- High power output
- Less maintenance
- Flat discharge curve
- Better cold weather performance
To BMS, or not...

- Battery Management/Monitoring System required for some chemistries
- Active or Passive monitoring
- Distributed or Centralized
- Expensive /complicated
- Potential fire hazard
Balancing

- No two cells are identical
- Cells must be balanced to prevent damage
- Balancing matches cells at either top or bottom
- If overcharged, cell is damaged
- If overdischarged, cell can be pushed to reversal and destroyed
Discharge curve and Half-pack Bridge

- Monitor each half of pack
- Take action if imbalance passes threshold
Contactor, Precharge, & Coil Suppression

- **Precharge Resistor**
 - Prevents current surge
 - Preserves controller capacitors
 - Prolongs contact life

- **Coil Suppression Diode**
 - Prevents voltage spike
 - Usage depends on controller/contactor requirements
Accessories

• If needed, accessories may run off an auxiliary driveshaft, or be powered separately
 – Air conditioning
 – Power steering
 – Power Brakes
Open Source EV Hardware & Software

- Controller
- Charger
- Instrumentation
- Misc
Open ReVolt projects

➢ The Cougar EV Series 500 DC Motor Controller PCB & Mosfet Power PCB several versions are available on wiki.
➢ The Cougar EV Series 1000 DC Motor Controller, Mosfet Power PCB, and Mosfet Driver PCB are available on wiki.
➢ The preliminary EV SR Motor Controller PCB is on wiki, development is on going.
➢ The preliminary EV AC Motor Controller PCB is on wiki, development is on going.
➢ The preliminary EV DC LCD Instrumentation PCB - Is now on wiki !!!
➢ The preliminary EV 6Kw DC Charger Controller PCB - Was added to the wiki !!!
➢ The preliminary EV BMS Controller PCB - Was added to the wiki !!!

* Planned Future Open ReVolt projects *

➢ The EV IGBT Driver PCB - BG2A/VLA500 Interface - Coming Soon !!!
➢ The Uprising EV Series DC Motor Controller, and IGBT Driver PCB Coming Soon !!!
Electric Motor Werks
10kW 60A Open Source Charger
EV Dashboard
EV Conversion Tools

Essentials
- Shop manual for donor vehicle
- 2+ ton trolley jack (high clearance preferred)
- 2+ ton adjustable jack stands
- Creeper
- Sockets, Wrenches, Screwdrivers, Pliers
- Angle Grinder
- Handheld drill
- Digital Volt Meter (DVM)
- Wire strippers and crimpers
- Cable cutters and crimper
- Shop light
- Rotary tool
- Measuring Tapes

Recommended
- Electrical Tape
- Engine hoist or transmission jack
- Clamp On Ammeter
- Drill press
- Air compressor
- Rhino Ramps
- Welding Equipment
- Safety goggles or glasses
- Latex (or similar) gloves
- Soldering Iron
- Zip Ties
- Vise

Carry-On
- Digital Volt Meter (DVM)
- Jumper cable
- Commonly used Sockets, Screwdrivers

Optional
- Workbench
- Box cutter, Jigsaw, Cut-off saw, Hacksaw
- Hammer, Pry Bar
- Heat gun or torch
EV Conversion Steps

• Build Requirements
• Explore the Possibilities
• Find a Donor
• De-ICE
• Eliminate Waste

• Install EV Components
 – Motor
 – Controller
 – Batteries
 – Charger
 – Accessories

• Hit the road!
• Keep on Hacking
Build Requirements

• Motivations?
• Maximize utility
• How far?
• How fast?
• Budget?
• Skills?
• Reality check
Keep it Legal

- Each state\country is different
- Some require inspections
- Some have strict requirements
- Some do not allow typical conversions
- Some don’t know what an EV is
Explore the Possibilities
EV Album

CURRENT TOTAL 3725 VEHICLES

Doug Johnson’s 1997 Ford Ranger XLT
Updated: 06/22/2012

John W Mitchell’s 1997 Saturn SC
Updated: 06/23/2012

Martin Winlow’s 2008 Vectrix VX-1
Updated: 06/18/2012

Bill Bates’s 2001 Nevcod Gizmo
Updated: 07/07/2012

thingstodo’s 1991 Chevrolet S-10
Updated: 06/16/2012

Pranav Bheda’s 1972 Volkswagen Super Beetle
Updated: 06/15/2012

Jarkko Santala’s 1987 Kawasaki GPX750R
Updated: 07/08/2012

Bruce Westlake’s 2011 Think City
Updated: 06/12/2012
Find a Donor

- Fun to drive
- Good working order (except engine)
- Aerodynamic
- Lightweight
- Cargo space
De-ICE

- Remove the engine
 - Find buyer first!
 - Jack up 2-3 feet for bottom removal
 - Engine hoist for top removal
- Drain and remove gas tank, radiator, starter, alternator, and other obsolete stuff
Eliminate Waste

• Less weight and less power draw = more range
• May be able to remove or replace non-essentials
 – Swap Fix-A-Flat for spare tire
 – Convert power steering and brakes to manual
Install EV Components

- Attach adapter plate and coupler to motor
- Install motor and controller
- Build/install battery boxes
- Install batteries and charger
- Install instruments, wiring, accessories, etc
Where to charge

- **110 V AC**
 - 20 Amps
 - 8 miles charge/hour

- **220 V outlet**
 - 50 Amps
 - 44 miles charge/hour

- **J1776-2009**
 - Level 1 120 V AC
 - Level 2 240 V AC
 - 80 Amps
 - 76 miles charge/hour

- **CHAdeMO**
 - Level 3 500V
 - 125 Amps
 - 250 miles charge/hour
Hit the road!
Sounds Great, But…

- Perpetual Motion
- Hydrogen
- Supercapacitors
- Hub Motors
- DIY Hybrid
- Solar
WARNING: EV Conversions are a very addictive/obsessive hobby. The only way to ‘finish’ a conversion is to start another.
EV Resources

- Vendors Used
 - Wilderness EV
 - KTA Services, Inc.
 - Cloud Electric
 - Sam’s Club
 - Calib Power
 - ebay
 - Lightobject
 - Chennic

- Additional Resources - chargedevs.com/Build-an-EV
Motor: $1200
Controller: $1000
Batteries: $800
Charger: $600
Adapter/Coupler: $500
Misc: $800

No longer being OPECXXON’s Bitch…Priceless